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Local Cosmic Strings from Pseudo-Anomalous U(1)
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Local cosmic strings solutions are introduced in a model with a peudo-anomalous
U(1) gauge symmetry. Such a symmetry is present in many superstring
compactification models. The coupling of those strings with the axion necessary
in order to cancel the anomalies does not prevent them from being local, even
though their energy per unit length is found to diverge logarithmical ly. I discuss
briefly the formation of such strings and the phenomenological constraints that
apply to their parameters.

INTRODUCTION

I report here work done in collaboration with P. BineÂtruy and P. Peter

[1 ] on cosmic strings in models with a pseudo-anomalous U(1) symmetry.

Such a symmetry arises generically in a large class of superstring compactifi-

cation models as a remnant of the Green±Schwarz [6] mechanism of anomaly
cancellation in the underlying 10-dimensional supergravity. In a bottom top

approach, interest in such models has recently been renewed in the framework

of horizontal symmetries trying to explain the hierachies in the quark and

lepton spectra [25 ].

It is generically well known that cosmic strings may form in the early
universe in the breaking of a U(1) symmetry [7, 11 ].2 This is also true when

the symmetry is pseudo-anomalous [4, 9, 10, 27 ]. However, because of their

being coupled to the axion field, such strings were thought to be of the global

kind. We show that there exists a possibility that (at least some of) the strings

formed at the breaking of this anomalous U(1) are local, in the sense that

their energy per unit length can be localized in a finite region surrounding
the string core, even though this energy is formally logarithmically infinite.

It will be shown indeed that the axion field configuration can be made to

1 LPTHE, UniversiteÂParis-XI, F-91405 Orsay Cedex, France.
2 See refs. 8 for recent reviews on topological defects in general.
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wind around the strings so that any divergence must come from the region

near the core instead of asymptotically. The cutoff scale that must then be

introduced is thus a purely local quantity, definable in terms of the microscopic
underlying fields and parameters. It is arguable that such a cutoff should be

interpreted as the scale at which the effective model used throughout ceases

to be valid.

This paper is divided into three parts; in the first one I expose the model

which we use for studying string solutions. Then I discuss briefly the Higgs

mechanism in this framework; in the final part I specifically give the local
cosmic strings solutions and discuss some related phenomenological

questions.

1. THE MODEL AND ITS RAISON D’ETRE

Compactification models for the heterotic string are known to lead in
general to the presence in the 4-dimensional theory of a so-called universal

axion field a [2 ]. At the supersymmetric level, this pseudoscalar field belongs

to the same (chiral) supermultiplet S as the dilaton field s and they form a

complex scalar field s 1 ia. The superfield S couples in a model-independent

way to the gauge fields present in the theory; one has in particular in the
Lagrangian

+ 5 2
s

4Mp
o
a

F a
m n F

a
m n 1

a

4Mp
o
a

F a
m n FÄ

a
m n (1)

where F a
m n is the field strength associated with the gauge field Aa

m and MP is

the reduced Planck scale, the index a runs over all gauge groups, and

FÄ a m n [
1

2
e m n r s F a

r s (2)

An Abelian symmetry with gauge field A m may have (mixed) anomalies:

under a gauge transformation of parameter a , the effective Lagrangian is no

longer invariant, but picks up new terms (the anomaly) given by d + 5
2 1±2 d GS a ( a F a

m n FÄ
a
m n . This can be canceled by an apropriate shift of the axion

a. Since there is a single model-independent axion (in the weakly coupled

heterotic string spectrum), only one Abelian symmetry, henceforth referred

to as U(1)X , may be pseudo-anomalous.

One can write the supersymmetric Lagrangian of a model with such a

pseudo-anomalous U(1)X symmetry:

+ 5 (_ 1 A ²
i e

X iV Ai)D-term 1 1 14 SW a W a 2 F-term

1 h.c. (3)

Using the standard notations of ref. 24. S is the axion±dilaton superfield, V
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is the gauge vector superfield, Ai are chiral superfields of respective charge

Xi under the pseudo-anomalous U(1)X symmetry, and _ 5 2 ln(S 1 SÅ 2 4 d GS

V ) is the modified KaÈ hler function for S [2 ]. The D-term of the Lagrangian is
now invariant under the following transformations:

Ai ® e 2 qi L Ai (4)

V ® V 1 i( L 2 L ² ) (5)

S ® S 1 4i d GS L (6)

where L is a chiral superfield which is the generalized gauge transformation
parameter. The variation of the term SW a W a under a restricted gauge transfor-

mation compensates for the 1-loop appearance of the gauge anomaly. A

superpotential 0(Ai) can also be added; one can show that it receives no

contribution from S in perturbation theory (however, it may no longer be the

case at the nonperturbative level). Integrating out the auxiliary fields, one

obtains for the bosonic terms in the Lagrangian

+ 5 2
M 2

P

4s2 - m s - m s 2 (D m F i)
² (D m F i) 2
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m 2

2

2
MP
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3
P

s
1 qi F ²

i F i 2
2

(7)

where we have restored the Planck mass everywhere and have introduced

the scalar fields F i carrying the integer charge Xi (Xi has been rescaled by a

factor 2) under the U(1)X symmetry, which are the lowest component of the

chiral superfield Ai. The covariant derivative is defined by

D m F i [ ( - m 2 iXi A m ) F i (8)

The d GS parameter (which fixes the scale of the symmetry breaking with

respect to the fundamental scale of the theory, here given by MP) may be

computed in the framework of the weakly coupled string and is found to be [2 ]

d GS 5
1

192 p 2 o
i

X i (9)

where Xi are the charges of the different fields under U(1)X.
We then obtain the model which we considered [1 ] by setting the dilaton

to its VEV ^ s & 5 MP /g2, which gives the gauge coupling constant of the

U(1) symmetry. Rescaling the Green Schwarz coefficient d GS and the axion

by a factor g2, one finds
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+ 5 2 (D m F i)
² (D m F i)

2
1

4g2 1 F m n F m n 2
a

MP

F m n FÄ m n 2
2 d 2

GS M 2
P A m A m 1 d GS MP A m - m a

2
1

4
- m a - m a 2 V( F i) (1 0)

The potential V( F i) is defined by

V( F i) [
g2

2
( F ²

i Xi F i 1 d GS M 2
P)2 (11)

The Lagrangian (10) is now invariant under the following local gauge transfor-

mation with gauge parameter a (x m ):

F i ® F i e
iXi a

A m ® A m 1 - m a (12)

a ® a 1 2MP d GS a

The transformation of the term (a/4g2MP)F m n FÄ m n cancels the variation of the
effective Lagrangian due to the anomaly, namely d + 5 2 (1/2g2) d GS a F m n

FÄ m n [assuming we are also transforming the fermions of the theory not written

explicitly in (10) ]. Making a rigid gauge transformation with parameter a 5
2 p without changing a as a first step, but transforming the other fields

(including the fermions), leads us to interpret a as a periodic field of period

4 p d GS MP through the redefinition a ® a 2 4 p d GS MP , which leaves the
Lagrangian invariant. It is also manifest that a behaves like a phase, in the

following rewriting of the kinetic term and of the axionic u -term in +:

+kin, u 5 2
1

4g2 1 F m n F m n 2
a

MP

F m n FÄ m n 2
2 - m f i - m f i 2 $ m h i $ m h i 2 $ m a $ m a (13)

where we have defined F i [ f i e
i h i ( f i being the modulus of F i) and

$ m h i 5 f i Xi 1 -
m h i

X i

2 A m 2 (14)

$ m a 5 MP d GS 1 - m a

2MP d GS

2 A m 2 (15)

At this point of the discussion it should be noted that there are other
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sources of potential axions (axion meaning here a field associated with a

Peccei±Quinn symmetry) in string theories than the universal one. These

arise from zero modes of the antisymmetric tensor field B a b which is present
in the supergravity multiplet of the 10-dimensional theory. Components Bij

(where i, j are indices tangent to the six-dimensional compact space) can

have axion-like couplings in a scheme-dependent way (in contrast to the

universal axion which can be seen as coming from the components B m n

tangent to the 4-dimensional noncompact space). In type I and II theories

the scalars from the R±R sector are also potential axions. For the universal
axion, as well as for the others, the exact pattern of symmetry one ends up

with in the 4-dimensional theory is very scheme dependent since these fields

receive mass from instanton effects (field theory, world sheet, or Dirichlet

instantons) breaking the symmetry they are associated with. The universal

axion, e.g., receives mass contributions from instantons of all the gauge

groups which survive under the string scale, possibly including other groups
than the standard model gauge groups. We did not include mass terms for

the axion in our Lagrangian (7), (10) since they are very model dependent,

and are suppressed by temperature in the early universe where cosmic strings

are likely to form (they can, however, have an important effect when the

temperature of the universe is decreasing). Moreover, one can look at the
Lagrangian (1 0) as the most general one for an axion compensating some

anomalous U(1)X symmetry, the couplings of the axion to the gauge fields

in (1 0) being imposed by gauge invariance. In this latter case MP has to be

understood as the mass scale associated with the relevant theory.

2. HIGGS MECHANISM

Let us now work out the Higgs mechanism in this context. We consider

for the sake of simplicity a single scalar field F of negative charge X and

consequently we drop the i indices. +kin, u can be rewritten

+kin, u 5 2 [M 2
P d 2

GS 1 f 2X 2 ]

3 F A m 2
1±2 MP d GS - m a 1 f 2X - m h

M 2
P d 2

GS 1 f 2X 2 G 2

2
f 2M 2

P d 2
GS X 2

M 2
P d 2

GS 1 f 2X 2 F - m a

2MP d GS

2
- m h
X G 2

1
d GS

2g2 1 f 2X 2

M 2
P d 2

GS 1 f 2 X 2 F a

2MP d GS

2
h
X G
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1
1±2 MP d GS a 1 f 2 X h

M 2
P d 2

GS 1 f 2 X 2 2 F m n FÄ m n 2
1

4g2F m n F m n (16)

The linear combination appearing in this last equation,

a

2MP d GS

2
h
X

(17)

is the only gauge-invariant linear combination of h and a (up to a constant).

The other one,

, [

1

2
MP d GS a 1 f 2 X h

M 2
P d 2

GS 1 f 2 X 2 (18)

has the property of being linearly independent of the previous one and of

transforming under a gauge transformation (12) as , ® , 1 a . We now

assume explicitely that F takes its vacuum expectation value ^ F ² F & [ r 2 in
order to minimize the potential (11):

r 2 5 2 d GS M 2
P /X (19)

We are left with, among other fields, a massive scalar Higgs field correspond-

ing to the modulus of F of mass mx given by

m2
x 5 2g2 r 2 X 2 5 2 2 d GS X g2 M 2

P (2 0)

and we define

aÃ[ F a

2MP d GS

2
h
X G ! 2 r MP d GS X

! M 2
P d 2

GS 1 r 2 X 2
(21)

and

F 2
a 5

1

128 p 4

M 2
P g4

r 2 X 2 (M 2
P d 2

GS 1 r 2 X 2)

5
1

128 p 4 M 2
P g4 F 1 1 1 mx

MP 2
2

1

2g2 X 2 G (22)

so that, with r being set,

+kin, u 5 2 [M 2
P d 2

GS 1 r 2 X 2 ] [A m 2 - m , ]2 2
1

2
- m aÃ- m aÃ

1 F aÃ

32 p 2Fa

1
d GS

2g2 , G F m n FÄ m n 2
1

4g2 F m n F m n (23)
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we can now make a gauge transformation to cancel - m , by setting a 5 2 ,.

This leaves us with

+kin, u 5 2
m2

A

2g2 A m A m 2
1

2
- m aÃ- m aÃ1

aÃ

32 p 2 Fa

F m n FÄ m n (24)

2
1

4g2 F m n F m n

where mA given by

m2
A 5 2g2 [r 2 X 2 1 M 2

P d 2
GS ]

5 m2
x F 1 1 1 mx

MP 2
2

1

2g2 X 2 G (25)

is the mass of the gauge field after the symmetry breaking. The remaining

symmetry,

aÃ® aÃ1
32 p 2 Fa

2g2 d GS b (26)

is the rigid Peccei±Quinn symmetry, which compensates for the anomalous

term arising from a rigid phase transformation of parameter b on the fermions.
To summarize, we have seen that in the presence of the axion the gauge

boson of the pseudo-anomalous symmetry absorbs a linear combination , of

the axion and of the phase of the Higgs field. We are left with a rigid

Peccei±Quinn symmetry, the remnant axion being the other linear combina-

tion aÃof the original string axion and of the phase of the Higgs field.

3. PSEUDO-ANOMALOUS U(1) STRINGS

3.1. Cosmic String Solutions

We now look for stationary local cosmic string solutions of the field
equations derived from Eq. (1 0) provided the underlying U(1) symmetry is

indeed broken, which implies that at least one of the eigenvalues Xi is negative.

So in this section we shall assume again only one field F with charge X,

with X , 0. The field equations are

Na 5 2 d GSMP - m A m 2
1

2g2 MP
F m n FÄ m n (27)

N f 5 f ( - m h 2 X A m )2 1 g2 X f (X f 2 1 d GS M 2
P) (28)

- m [f 2 ( - m h 2 X A m ) ] 5 0 (29)
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1

g2 - m 1 a

MP

FÄ m n 2 F m n 2 5 d GS MP - n a 2 2 d 2
GS M 2

PA n 1 2X f 2( - n h 2 XA n ) (3 0)

Using Eq. (2), which implies - m FÄ m n 5 0, and deriving Eq. (30) with respect

to x n , We obtain, with the help of Eqs. (27) and (29),

F m n FÄ m n 5 0 (31)

and we can rewrite Eq. (30),

1

g2 - m F m n 5
1

MP

FÄ m n - m a 1 ) n 1 J n (32)

where the currents are defined as

J m 5 2 2X f 2 ( - m h 2 X A m ) 5 2 2X f $ m h (33)

and

) m 5 2 d GS MP ( - m a 2 2 d GS MP A m ) 5 2 2MP d GS $ m a (34)

Equations (27) and (29) then simply express the two current conservations

- ? J 5 - ? ) 5 0, when account is taken of Eq. (31).
Looking for a local cosmic string solution, we ask that on a 1-circle at

infinity on a 2-plane transverse to the string, the kinetic and potential energy

of the different fields vanish. Namely,

F m n F m n 5 0 (35)

(D m F )2 5 0 (36)

($ m a)2 5 0 (37)

V( F ) 5 0 (38)

As usual the fact that the P 1 of the vacuum manifold derived from the

potential (11) is nontrivial leads to the possibility to have a nontrivial winding

solution of Eq. (38) with an asymptotic behavior; in cylindrical coordinates,

F 5 r ei h (39)

h 5 n u (4 0)

where r is defined in (19) and n is the string winding number. Equations

(36) and (35) can then be satisfied asymptotically by taking A m a pure gauge

and in such a way as to compensate for the Higgs field energy density:

A m 5 - m h /X (41)

as in the Nielsen±Olesen [11] solution. Equation (37) then induces a winding

of the axion field with a winding number related to that of h by
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a 5
2 d GS MP

X
h (42)

a perfectly legitimate choice, as it should be remembered that a is a periodic
field of period 4 p d GSMP [) X ) is here implicitly equal to 1, but it is clear that

for any other value a solution such as (42) exists].

The energy of the cosmic string configuration is confined in the string

as in the Nielsen±Olesen strings (and for the very same reason) and the

cosmic string is perfectly local. This is in striking contrast with the case of

a global string, where a divergent behavior of the energy density arises
because the energy is not localized and a large-distance cutoff must be

introduced. In this case, a divergence is still to be found, as we will now

see, but this time at a small distance near string core so that the total energy

is localized in a finite region of space.

The stress-energy tensor is given by

T m
n 5 2 2g m g d +

d g g n 1 d m
n + (43)

which reads explicitly

T m n 5 2[- m f - n f 2
1

2
g m n ( - f )2 ]

1
1

g2 1 F r m F n
r 2

1

4
g m n F ? F 2 (44)

2
1

2
g2 g m n (X f 2 1 d GS M 2

P)2

1
1

2 d 2
GS M 2

P

[) m ) n 2
1

2
g m n )2 ] (45)

1
1

2X 2 f 2 [J m J n 2
1

2
g m n J2 ]

where account has been taken of the field equations. The energy per unit

length U and tension T will then be defined respectively as

U 5 # d u r dr T tt and T 5 2 # d u r dr T zz (46)

The question as to whether the corresponding string solution is local or

global is then equivalent to asking whether these quantities are asymptotically

convergent (i.e., at large distances). The total energy per unit length (and
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tension) is not finite, however, in this simple string model, for it contains

the term

U 5 f.p. 1 2 p # dr

r 1 d GS MP n

X
2 d GS MP A u 2

2

(47)

(f.p. denotes the finite part of the integral), so that, since A u must vanish by

symmetry in the string core, one ends up with

U 5 f.p. 1 2 p 1 d GS MP n

X 2
2

ln 1 RA

ra 2 (48)

where RA is the radius at which A m reaches its asymptotic behavior, i.e.,

roughly its Compton wavelength mA given in (25), while ra is defined as the

radius at which the effective field theory (1 0) ceases to be valid, presumably

of order M 2 1
P ; the correction factor is thus expected to be of order unity for

most theories. Hence, as claimed, the strings in this model can be made
local with a logarithmically divergent energy. The regularization scale ra is,

however, a short-distance cutoff, solely dependent on the microscopic struc-

ture, and involves neither the interstring distance nor the string curvature

radius. In particular, the gravitational properties of the corresponding strings

are those of a usual Kibble±Vilenkin string [13 ], given the equation of state

is that of the Goto±Nambu string U 5 T 5 const, and the light deflection
is independent of the impact parameter [14].

The solution (42) turns out, as can be explicitly checked using Eqs. (27)

and (31), to be the only possible nontrivial and asymptotically converging

solution.

Moreover, the stationnary solution (42) shows the axion gradient to be
orthogonal to FÄ m n , i.e., - m aFÄ m n 5 0. Therefore, Eqs. (27)±(32) reduce to the

usual Nielsen±Olesen set of equations [11], with the axion coupling using

the string solution as a source term. It is therefore not surprising that the

resulting string turns out to be local.

The local string solution we have found can also be considered using

the new dynamical variables aÃand l defined in the previous section. In this
language the local strings considered are the one obtained by a winding of

l and A m around the string core, whereas aÃis not winding. A winding of aÃ

would generate global axionic-like strings decoupled from the previous ones.

3.2. Local String Genesis

Forming cosmic strings during a phase transition is a very complicated

problem involving thermal and quantum phase fluctuations [15 ]. It is far

from clear how a and h fluctuations will be correlated (even though they
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presumably will be). One can consider, as a toy model, the possibility that

a network of two different kinds of strings will be formed right after the

phase transition, call them a-strings and h -strings, with the meaning that an
a-string is generated whenever the axion field winds (ordinary axion string),

while an h -string appears when the Higgs field F winds. Both kinds of

strings are initially global since for both of them, only part of the covariant

derivatives can be made to vanish. We expect, however, the string network

to consist, after some time, of only these local strings together with the usual

global axionic strings.
Let us consider an axionic string with no Higgs winding: as A m Þ 0,

the vacuum solution F 5 r [Eq. (19) ] is not a solution, and thus the axionic

string field configuration is unstable. As a result of Eq. (28), the Higgs field

amplitude tends to vanish in the string core. At this point, it becomes, near

the core, topologically possible for its phase to start winding around the

string, which it will do since this minimizes the total energy while satisfying
the topological requirement that A m flux be quantized. Such a winding will

propagate away from the string.

Conversely, consider the stability of an h -string with a 5 0. The conser-

vation of 7 implies, as one can fix - m A m 5 0, that Na 5 0, whose general

time-dependent solution is a 5 a( ) r ) 6 t). Given the cylindrical symmetry,
this solution can be further separated into a 5 f(r 2 t) u . This means that

having a winding of a that sets up propagating away from the string is among

the solutions. As this configuration ultimately would minimize the total

energy, provided limt ® ` f 5 2 2 d GSMP/X, this means that the original string

is again unstable and will evolve into the stationary solution that we derived

in the previous section.
It should be remarked at this point that this time evolution can in fact

only be accelerated when one takes into account the coupling between a and

h : if either one of them is winding, then the other one will exhibit a tendency

to also wind, in order to minimize locally the energy density. Indeed, it is

not even really clear whether the string configurations we started with would

even be present at the string-forming phase transition. What is clear, however,
is that after some time, all the string network would consist of local strings

having no long-distance interactions. This means in particular that the relevant

scale, if no inflationary period is to occur after the string formations, should

not exceed the GUT scale, in order to avoid cosmological contradictions.

3.3. Constraints on the Scale of the Symmetry Breaking

The cosmological evolution of the network of strings formed in these

theories may also lead to serious constraints on the Green±Schwarz coeffi-

cient. If domain walls form connecting the strings, which itself depends on
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the (temperature-dependent ) potential generated by instantons, the network

is known to rapidly (i.e., in less than a Hubble time) decay into massive

radiation and the usual constraint relative to the axion mass would hold [7,
8, 16 ]. If, however, the string network is considered essentially stable, then

its impact on the microwave background limits the symmetry-breaking scale

d GSMP through the observational requirement that the temperature fluctuations

be not too large [17 ], i.e.,

GU & 102 6

with G the Newton constant, G 5 M 2 2
P /(8 p 2). Therefore, the cosmological

constraint reads

d GS & 10
2 2 (49)

a very restrictive constraint indeed, which can be compared with the scale

given in (9) or with similar predictions in the strongly coupled heterotic

strings [20].

The strings that we have discussed here might appear in connection

with a scenario of inflation. Indeed, the potential (11) is used for inflation
in the scenario known as D-term inflation [18]: inflation takes place in a

direction neutral under U(1) and the corresponding vacuum energy is simply

given by

V 0 5
1

2
g2 d 2

GSM
4
P (5 0)

The U(1)-breaking minimum is reached after inflation, which leads to cosmic

string formation. Such an inflation era cannot therefore dilute the density of
cosmic strings and one must study a mixed scenario [9 ]. It is interesting to

note that, under the assumption that microwave background anisotropies are

predominantly produced by inflation, the experimental data put a contraint

[5, 10, 19] on the scale j [ d 1/2
GSMP, which is stronger than (49). Several ways

have been proposed [5, 19 ] in order to lower this scale. They would at the
same time ease the constraint (49).

3.4. String Currents

It is clear that the model (1 0) is no longer supersymmetric, since we

have set the dilaton to its VEV, whereas the axion is a dynamical field and

belongs to the same multiplet. Allowing the dilaton to be dynamic as in (7),
we can easily preserve supersymmetry after the breaking of the U(1), which

can be desirable if we assume that supersymmetry is broken at some lower

scale than the one of U(1) breaking. Since the D-term, which gives the

potential (11), is zero after symmetry breaking, one has only to be sure that
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the VEV taken by the Higgs field F does not destabilize the vanishing energy

of the vacuum through the superpotential (an explicit example is given in

the first of refs. 2). Following Hughes and Polchinski [3 ], we expect that,
even when the Lagrangian is fully supersymmetric, at least some of the

supersymmetry generators will be broken by the cosmic string configuration

because this configuration breaks translational invariance. This will lead to

goldstinos, which are massless Fermi fields on the string arising from Fermi

zero modes in the underlying theory and give rise to supercurrents [12 ] (some

explicit example of these superconducting supersymmetric cosmic strings
have recently been worken out by Davis et al. [22, 23]). These currents,

which can also appear in a nonsupersymmetric model from the coupling of

the string to other fields, fermionic in particular, tend to raise the stress-

energy tensor degeneracy in such a way that the energy per unit length and

tension become dynamical variables. For loop solutions, this means a whole

new class of equilibrium solutions, named vortons, whose stability would
imply a cosmological catastrophe [21]. If these objects were to form, (49)

would change into a drastically stronger constraint. Issues such as the explicit

construction of the currents, their relation to supersymmetry, and whether

supersymmetry breaking might destabilize the currents [22 ], thereby effec-

tively curing the model from the vorton problem, still deserve investigation;
as do the possible consequences of having a dynamical dilaton [26]. We

are also planning to look at a more realistic model in the framework of

horizontal symmetries.
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